baby cry detection and analysis

Baby cry detection and analysis

This project is developed on Python programming with Machine Learning algorithm, K-Nearest Neighbor (KNN) algorithm

The project used Audio pre-processing with MFCC technique to extract feature.

ML is used to train and detect the infant cry type. There are five types used in this project are

Belly Pain

Burping

Discomfort

Hungry

Tired

The project gets accuracy of 88% with KNN algorithm

Baby cry detection

Python Demo video

landslide prediction using machine learning algorithms

Landslide prediction using Machine Learning algorithms

Landslide is one of the repeated geological hazards during rainy season, which causes fatalities, damage to property and economic losses in all parts of the world. Landslides are responsible for at least 17% of all fatalities from natural hazards worldwide. Due to global climate change, the frequency of landslide occurrence has been increased and subsequently, the losses and damages associated with landslides also have been increased.

Python Project demo video