Lyrics Mood Prediction using Machine Learning
Lyrics Mood prediction using Machine Learning
Lyrics Mood prediction using Machine Learning
Convolutional Neural Networks for Diabetic Retinopathy
The diagnosis of diabetic retinopathy (DR) through colour fundus images requires experienced clinicians to identify the presence and significance of many small features which, along with a complex grading system, makes this a dicult and time consuming task. In this paper, we propose a CNN approach to diagnosing DR from digital fundus images and accurately classifying its severity. We develop a network with CNN architecture and data augmentation which can identify the intricate features involved in the classification task such as micro-aneurysms, exudate and haemorrhages on the retina and consequently provide a diagnosis automatically and without user input. We train this network using a high-end graphics processor unit (GPU) on the publicly available Kaggle dataset and demonstrate impressive results, particularly for a high-level classification task.
Techniques Used
Python Deep Learning project demo
This project is proposed for real time face detection and recognition. The project is implemented in both machine learning and deep learning.
Implementation step:
Face is detected in real time, detected face is trained with atleast 1000 frames for good accuracy.
The training the collected data
Face recognition with input and mark attendance
Software used: Python
Python Project Demo